56 research outputs found

    Serberus: Protecting Cryptographic Code from Spectres at Compile-Time

    Full text link
    We present Serberus, the first comprehensive mitigation for hardening constant-time (CT) code against Spectre attacks (involving the PHT, BTB, RSB, STL and/or PSF speculation primitives) on existing hardware. Serberus is based on three insights. First, some hardware control-flow integrity (CFI) protections restrict transient control-flow to the extent that it may be comprehensively considered by software analyses. Second, conformance to the accepted CT code discipline permits two code patterns that are unsafe in the post-Spectre era. Third, once these code patterns are addressed, all Spectre leakage of secrets in CT programs can be attributed to one of four classes of taint primitives--instructions that can transiently assign a secret value to a publicly-typed register. We evaluate Serberus on cryptographic primitives in the OpenSSL, Libsodium, and HACL* libraries. Serberus introduces 21.3% runtime overhead on average, compared to 24.9% for the next closest state-of-the-art software mitigation, which is less secure.Comment: Authors' version; to appear in the Proceedings of the IEEE Symposium on Security and Privacy (S&P) 202

    Squamous Cell Carcinoma: PET/CT and PET/MRI of the Pretreatment and Post-Treatment Neck

    Get PDF
    The incidence of head and neck cancer continues to rise annually, most commonly squamous cell carcinoma (SCCa). Advances in imaging techniques have improved diagnostic accuracy with important ramifications for initial staging and post-treatment surveillance. FDG-PET/CT and, more recently, FDG-PET/MRI have revolutionized the staging and surveillance of head and neck SCCa. We detail the diagnostic role of FDG-PET/CT and FDG-PET/MRI of SCCa at the different head and neck subsites, highlighting their role in identifying the primary tumor extent, regional nodal metastases, and distant metastatic disease in the pretreatment and post-treatment setting, as well as implications for staging, treatment, and prognosis

    Axiomatic hardware-software contracts for security

    Get PDF
    We propose leakage containment models (LCMs)—novel axiomatic security contracts which support formally reasoning about the security guarantees of programs when they run on particular microarchitectures. Our core contribution is an axiomatic vocabulary for formalizing LCMs, derived from the established axiomatic vocabulary for formalizing processor memory consistency models. Using this vocabulary, we formalize microarchitectural leakage—focusing on leakage through hardware memory systems—so that it can be automatically detected in programs and provide a taxonomy for classifying said leakage by severity. To illustrate the efficacy of LCMs, we first demonstrate that our leakage definition faithfully captures a sampling of (transient and non-transient) microarchitectural attacks from the literature. Second, we develop a static analysis tool based on LCMs which automatically identifies Spectre vulnerabilities in programs and scales to analyze real-world crypto-libraries

    Hardware-Software Codesign for Mitigating Spectre

    Get PDF
    Spectre attacks exploit control- and data-flow (mis)prediction on modern processors to transiently leak program secrets. Comprehensively mitigating Spectre leakage is hard, and doing so while preserving the program’s performance is even harder: no existing Spectre mitigations are widely deployed due to their high overhead or high complexity. We claim that a comprehensive, efficient, and low-complexity mitigation for Spectre attacks requires engaging in software-compiler-hardware co-design. In our talk, we will pitch such a co-designed Spectre mitigation that will be widely deployable at a low cost in security-critical applications. As a first step towards this goal, we have developed Serberus, a comprehensive and proven-correct Spectre mitigation for constant-time code that targets existing hardware. We are currently exploring lightweight hardware support to improve Serberus’ performance in other application domains

    Transcend Onsen - Hakone, Japan

    Get PDF

    Transcend: A Thin-Shell Japanese Onsen Experience

    Get PDF
    This project is an interdisciplinary architectural design of a funicular Japanese onsen utilizing the compressive strength of thin-shell concrete. A section of this project was also built to scale on the Cal Poly campus in the Architectural Engineering department\u27s High Bay facility. This project was designed utilizing Rhinoceros and analyzed using SAP 2000 19

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure
    • 

    corecore